- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Khandelwal, A (3)
-
Kant, N (2)
-
Mukherjee, R. (2)
-
Agrawal, A (1)
-
Bhattacharya, U (1)
-
Bhattacharyya, A (1)
-
Chen, C (1)
-
Cloninger, A. (1)
-
Dasgupta, I (1)
-
Hanson, G.H. (1)
-
Khachiyan, A. (1)
-
Khandelwal, A. (1)
-
Krishnamurthy, B (1)
-
Kumar, Y (1)
-
Mukherjee, R (1)
-
Petrangeli, S (1)
-
Rosing, T. (1)
-
Shah, R R (1)
-
Singh, S (1)
-
Thomas, A. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The problems of changing the walking speed and stride length of impact-free gaits for point-foot planar bipeds are addressed. The impact-free gaits are designed using an approach developed in prior work. It is shown that the impulse controlled Poincar´e map (ICPM) approach can be modified to transition between orbits defining gaits with different walking speeds, and the continuous controller can be changed during the swing phase to transition between gaits that have distinct stride lengths. The effectiveness of the approaches is demonstrated using simulations carried out on a five-link biped.more » « less
-
Khandelwal, A.; Mukherjee, R. (, ASME Journal of Applied Mechanics)
-
Khandelwal, A; Kant, N; Mukherjee, R. (, IEEE robotics automation letters)
-
Khandelwal, A; Agrawal, A; Bhattacharyya, A; Kumar, Y; Singh, S; Bhattacharya, U; Dasgupta, I; Petrangeli, S; Shah, R R; Chen, C; et al (, 12th International Conference on Learning Representations (ICLR 2024))
-
Khachiyan, A.; Thomas, A.; Zhou, H.; Hanson, G.H.; Cloninger, A.; Rosing, T.; and Khandelwal, A. (, Annual report National Bureau of Economic Research)
An official website of the United States government

Full Text Available